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Abstract. The structure of low-lying states of the carbon isotopes is investigated using the improved version
of the Antisymmetrized Molecular Dynamics (AMD) Multi-Slater Determinant model. The theoretical
method is found to be very useful to study ground-state properties of various nuclei covering light unstable
nuclei. The calculations succeed to reproduce reasonably well many experimental data for the carbon
isotopes 12C-22C such as binding energies, the energies of the 2+

1 states in the even-even isotopes, radii
and electromagnetic transition strengths. We investigate the structure change with the increasing neutron
number and observe the existence of various exotic phenomena, like the development of a neutron skin and
large deformations which appear in unstable nuclei. Our calculations clearly support the existence of the
N = 8 and N = 16 neutron magic numbers. The role of the spin-orbit interaction in the description of the
studied isotopes and in the development of cluster structures is discussed. A special approach, important
for weakly bound systems, is adopted for 15C. It enables us to better describe the tail of the wave function.

PACS. 21.10.Dr Binding energies and masses – 21.10.Gv Mass and neutron distributions – 21.10.Ky
Electromagnetic moments – 21.60.Gx Cluster models

1 Introduction

The structure of light neutron-rich carbon nuclei is exten-
sively studied using radioactive isotopes beams. A newly
discovered magic number N = 16 corresponds to the
driplines of the C, N, O isotopes [1,2], e.g. the dripline
nucleus of the C isotopes is 22C. The nucleus 15C has
been known to have a halo structure, due to the valence
neutron in the s-orbit.
The situation with another possible candidate for a nu-

cleus with halo structure, namely 19C, is quite controver-
sial. Although several experiments have been performed
to explore the structure of 19C, the ground-state spin
of 19C still remains unknown. From simple shell model
considerations, the valence neutron is expected to occupy
the 1d5/2 orbital. Some shell model calculations suggest a

5/2+ ground state with a strong contribution from a 2s1/2
neutron coupled to the 2+ state of 18C at 1.62 MeV [3];
others predict a 1/2+ as a ground state with a 5/2+ state
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at 50–190 keV excitation energy [4,5]. The study of the
Coulomb dissociation of 19C [6] supports the ground-state
spin assignment of 1/2+ for this nucleus. If 19C is really
a halo nucleus, then it is natural to expect that the va-
lence neutron will occupy the 2s1/2 orbital. However, it

is already occupied in 15C, then the natural explanation
would be the change of the order of the 2s1/2 and 1d5/2

orbitals; while in 15C the former one is lower, the 1d5/2

orbital becomes lower with increasing neutron number.
On the other hand, a lowering of the 2s1/2 orbital is also

possible, in analogy to the 11Be case.
As pointed out in ref. [7], the experimental evidence

for the ground-state spin of 19C is not yet very clear.
The fairly long tail of the momentum distribution is not
successfully interpreted by a model assuming a simple
core-plus-2s1/2 neutron structure. Recent investigations
in GANIL show some indications of the existence of a
gamma decay at 200 keV for 19C , from prompt gamma
measurements in coincidence with 19C produced by frag-
mentation [8]. This is the only gamma transition so far
observed and it raises the following question. Are there
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more bound excited states in 19C ? If so, an isomeric state
might be necessary to explain the GANIL result when no
prompt gamma ray other than 200 keV was observed. Fur-
ther experiments are planned which would search for such
an isomeric state.
In connection with the C isotopes, the main issues to

be understood are the situation with 19C, the change of
the order of the 2s1/2 and 1d5/2 orbits and a mechanism
for the appearance of the N = 16 neutron magic num-
ber. A possible explanation for the latter is a structure
change in the C isotopes in which the spin-isospin part
of the nucleon-nucleon effective interaction and the p-sd
shell interaction play a prominent role [2].
Recent shell model calculations are another source of

information about the structure of the neutron-rich car-
bon isotopes. Shell model calculations using two types of
p-sd Hamiltonian were performed in ref. [3]: WBT, mod-
eled on a set of two-body matrix elements obtained from
a bare G matrix and WBP, modeled on a one-boson ex-
change potential which includes the one-pion exchange po-
tential and a long-range (monopole) interaction. For 16C
, WBP gives spectroscopic factors C2S(2s1/2) = 0.60 and

C2S(1d5/2) = 1.23 while WBT gives C
2S(2s1/2) = 0.78

and C2S(1d5/2) = 1.07. The spectroscopic factors depend
on the single-particle energies and, in particular, on the
crossing of the single-particle energies between 17O (where
the 1/2+ is 0.87 MeV above the 5/2+) and 15C. BothWBP
and WBT interactions present a triplet of low-lying states
for 17C. The WBP interaction gives a 3/2+ ground state,
in agreement with the latest experimen tal results. How-
ever, the spectroscopic factors predicted with the WBP
and WBT interactions are very similar. The 3/2+ ground
state has basically three components, the main one be-
ing 1d5/2 × [(1d2

5/2)]2+ . This accounts for the dominant

l = 2 knockout to the excited 2+ state of 16C. The smaller
l = 0 component to the same state arises from a small ad-
mixture of 2s1/2 × [(1d2

5/2)]2+ . The predicted small cross-

section to the ground state of 16C comes from a small
admixture of the 1d3/2 × [(1d2

5/2)]0+ component.

The main advantage of the Antisymmetrized Molecu-
lar Dynamics (AMD) [9] approach is that it is completely
free from any model assumptions such as shell model or
cluster structure, axial symmetry of the system and so on.
Thus it can describe the system without prejudice in the
sense that no model assumption about the wave function
is made in advance. In the light nuclei where both shell
model and cluster structure appear, the applicability of
mean field or cluster models is not assured. The AMD
method, on the other hand, can describe both of them
easily.
In this paper, we apply the improved version of the

AMD approach and re-analyze the systematics of the C
isotopes. The r.m.s. radii, binding and 2+1 excitation en-
ergies, proton and neutron quadrupole moments and the
B(E2, 0+ → 2+) values are calculated and compared with
the available experimental data. The agreement between
the calculated and experimental data is reasonable. The
details of the adopted method and the motivation for its
introduction are explained in the next section.

2 Multi-Slater determinant AMD

The motivation for introducing the improved method is
as follows; in previous studies it has been shown that one
Slater determinant is not enough to describe a system with
a well-developed halo or neutron skin structure. An at-
tempt to improve the description by superposing several
Slater determinants did not lead to substantial improve-
ment and the computing time increased considerably.
The improved method which we adopt in this work

corresponds to the combination of AMD and the Gener-
ator Coordinate Method (GCM) [10]. The initial GCM
basis wave functions are constructed in such a way that
they correspond to a certain value of a properly chosen
physical quantity. By changing the value of this quantity,
which is constrained during the cooling process, a lot of
Slater determinants with different intrinsic structure are
prepared. This gives a much better basis for our AMD
calculations.
In this approach, the r.m.s. radius is constrained dur-

ing the cooling process and afterwards a lot of Slater deter-
minants with different intrinsic structures (corresponding
to different constrained r.m.s. radii) are superposed. The
mixing amplitudes of these Slater determinants are deter-
mined after the angular-momentum projection by diago-
nalization of the Hamiltonian matrix. This method can
be regarded as a combination of projection after variation
(PAV) (the preparation of the GCM basis by applying
the cooling method with a constraint) and variation after
projection (VAP) (GCM diagonalization with the angu-
lar momentum and parity projected wave functions). We
expect that by this double variational procedure more re-
liable wave functions are obtained than by applying the
(PAV) itself. Furthermore, when we solve the cooling equa-
tion, different initial sets of parameters are prepared to
take into account many local minima of the constraint
function, which will be defined later. These minima cor-
respond to different possible geometrical arrangements of
the nucleons.
First, we introduce the simple AMD method without

any constraint. The total wave function (|ΨJ±MK〉) is de-
scribed as a superposition of Jπ projected AMD wave

functions (|ΦJ±MK(Z
n(β);β)〉) as follows:

|ΨJ±MK(Z)〉 =
∑

β

cβ |ΦJ±MK(Z
β ;β)〉. (1)

Here β represents the index of an AMD basis function,
and the coefficients cβ are determined by diagonalizing
the Hamiltonian matrix. The parameter (Z =Z1, . . . ,ZA)
represents the centers of the Gaussian wave packets of
nucleons. Here, the parity and the angular momentum are
projected to good quantum numbers,

|Φ±(Z)〉 = P̂ J
MK P̂

±|Φ(Z)〉, (2)

P̂± =
1

2
(1± P̂ (r)), (3)

P̂ J
MK =

∫

dαd(cosβ)dγDJ∗
MK(αβγ)R(Ω) . (4)
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Each AMD wave function in eq. (2) for the A-nucleon
system has the following form:

|Φ(Z1 Z2, ...,ZA)〉 = A[φ1φ2 · · · φA], (5)

φi = ψiχi, (6)

where φi is the i-th single-particle wave function with spa-
tial part ψi and the spin-isospin part χi. The spatial part
is expressed by a Gaussian wave packet in coordinate rep-
resentation,

ψi(r) =

(

2ν

π

)3/4

exp

[

−ν
(

r − Zi√
ν

)2

+
1

2
Z

2
i

]

, (7)

∝ exp
[

−ν(r −Ri)
2 +

i

~
Ki · r

]

, (8)

where complex parameters Zi =
√
νRi+

i
2~
√
ν
Ki define

the centers of the Gaussian wave packets and ν is a width
parameter, that is fixed to ν = 1

2b2 , b = 1.6 fm. In this
framework, the AMD wave functions with different intrin-
sic configurations corresponding to different constrained
r.m.s. radii of the total system are superposed.
The diagonal elements of the Hamiltonian matrix be-

come functions of the parameter Z,

E(Z,Z∗) ≡ 〈Φ±(Z)|Ĥ|Φ±(Z)〉
〈Φ±(Z)|Φ±(Z)〉 . (9)

We optimize these parameters Z before the angular-
momentum projection by using the frictional cooling
method in AMD,

dZi

dτ
= − ∂E

∂Z∗i
,

dZ∗i
dτ

= − ∂E

∂Zi
. (10)

As shown in ref. [9], by solving this cooling equation, the
expectation value of the Hamiltonian (E) decreases with
increasing imaginary time τ , since the τ derivative of E is
always negative,

dE

dτ
=

A
∑

i

∂E

∂Zi
· dZi

dτ
+

A
∑

i

∂E

∂Z∗i
· dZ

∗
i

dτ
, (11)

= −2
A
∑

i

dZi

dτ
· dZ

∗
i

dτ
< 0. (12)

During this optimization of the parameters, the parity
of the system is projected to a good quantum number.
As explained in the beginning of this section, one or

even several Slater determinants prepared in this way are
not enough to describe weakly bound systems. Some of
such randomly generated Slater determinants can be ba-
sically identical after the angular-momentum projection.
Now we describe the procedure on how to prepare the

AMD wave functions with an r.m.s. constraint. First we
prepare several initial wave functions by solving a cooling-
like equation

dZi

dτ
= − ∂f

∂Z∗i
,

dZ∗i
dτ

= − ∂f

∂Zi
, (13)

where the constraint function is

f = (O − r2constr.)
2. (14)

Here O is the expectation value of an operator Ô =
1
A

∑A
i r

2
i , where ri are the position vectors of nucleons

in the center-of-mass system. The constrained values of
the r.m.s. radius, rconstr., will be shown in tables 1 and 4.
Values of the constraints close to the experimental r.m.s.
radius are chosen as these are expected to contribute the
most to the binding energy. An important point is that
we prepare several wave functions with different initial
parameter values for one constrained r.m.s. radius to in-
clude many local minima of the constraint function which
correspond to different geometrical arrangements of the
nucleons having the same r.m.s. radius.
When the value of the constraint function f is suf-

ficiently small, we proceed to the next step. The initial
wave functions correspond in general to highly excited
states and are cooled down by solving the frictional cool-
ing equation. The r.m.s. radius is kept constant during
the cooling process by introducing a Lagrange multiplier
in eq. (15),

dZi

dτ
= − ∂E

∂Z∗i
+ η

∂O

∂Z∗i
,
dZ∗i
dτ

= − ∂E

∂Zi
+ η

∂O

∂Zi
, (15)

Here, the multiplier η is determined by the condition
that the τ derivative of O is zero,

∂O

∂τ
=

A
∑

i

∂O

∂Zi

∂Zi

∂τ
+ c.c.,

=

A
∑

i

∂O

∂Zi

{

− ∂E

∂Z∗i
+ η

∂O

∂Z∗i

}

+ c.c. = 0. (16)

Therefore, the η value is determined from this equation,

η =

∑A
i

∂O

∂Zi

∂E

∂Z
∗

i

+ c.c.
∑A

i
∂O

∂Zi

∂O

∂Z
∗

i

+ c.c.
. (17)

The Hamiltonian and the effective nucleon-nucleon in-
teraction used is the same as in ref. [11]; the Majorana
parameter M of the Volkov No. 2 interaction and the
strength of the G3RS spin-orbit interaction are deter-
mined by the α-α and α-n scattering phase shift analyses.
The strength of the Bartlett and Heisenberg terms of the
central interaction has been set to zero.
We want to stress that the study of effective inter-

actions in the AMD model is of importance because it
is still not obvious which of the effective interaction pa-
rameters should be adopted in the AMD framework. The
Volkov and modified Volkov interactions, although used
in most existing structure AMD studies, are not global.
Rather, some of the parameters have to be optimized for
each region of the nuclear mass. In ref. [12], the Gogny
and Skyrme SIII interactions are used to calculate ground-
state properties of light nuclei. The Gogny force gives in
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Fig. 1. Dependence of the binding energy on the number of
basis functions. The first basis function is prepared without
any constraint. To this basis function other basis functions are
added which correspond to the r.m.s. constraints 2.225 fm to
2.700 fm with a step of 0.025 fm.

general slightly better results than the SIII force, but the
tendency is similar for both interactions. Structure of light
unstable Li, Be, B and C isotopes using Volkov No. 1 and
Case (1) and Case (3) of the modified MV1 interactions
containing the zero-range three-body force as a density-
dependent term is investigated in ref. [13].

3 Results

First, we show the results for the even-even C isotopes.The
number of basis states employed are summarized in ta-
ble 1. For each constrained value of the r.m.s. radius
rconstr., 15 basis states calculated from different initial pa-
rameter sets are prepared. Obviously, the binding energies
are also improved by a superposition of a larger number of
basis states. For a comparison, when only three basis wave
functions are taken for 16C (one for each rconstr.= 2.3, 2.4
and 2.5 fm in table 1), the calculated ground-state binding
energy is about 5 MeV lower than when 45 basis functions
are adopted (15 basis functions for the same rconstr.).
In fig. 1 the dependence of the binding energy of 12C

on the number of basis functions is shown. Here, 1 on the
horizontal axis corresponds to one basis function, which is
calculated without any constraint. And 2 on the horizontal
axis shows the superposition of this basis function and one
whose r.m.s. radius is constrained to rconstr. = 2.225 fm.
Then 3 corresponds to the superposition of these two basis
functions and a new one with rconstr. = 2.250 fm and so
on up to rconstr. = 2.700 fm with a step of 0.025 fm. As is
seen from the figure, when the convergence is reached, the
binding energy is still much smaller than the experimental
value of 92.2 MeV.
In fig. 2 a different type of convergence of the binding

energy of 12C as a function of the total number of ba-
sis functions is shown. Here, three different constraints
rconstr. = 2.3, 2.4 and 2.5 fm are kept fixed and only
the number of basis functions generated for each of them
changes. Thus, for example, 69 basis functions means 23
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Fig. 2. Dependence of the binding energy on the number of
basis functions. Three r.m.s. constraints 2.3, 2.4 and 2.5 fm are
kept constant and for each of them 1 up to 23 basis functions
are prepared.

Table 1. The number of the employed basis states for the even-
even C isotopes as a function of constrained r.m.s. radius. 15
basis states calculated from different initial parameter sets are
prepared for each constrained value of the r.m.s. radius.

rconstr. (fm) 12C 14C 16C 18C 20C 22C

2.3 15
2.4 15 15
2.5 15 15 15
2.6 15 15 15 15
2.7 15 15 15 15
2.8 15 15 15
2.9 15

basis functions for each rconstr.. Even though the conver-
gence is worst, it is seen that a better approximation of the
binding energy can be reached. We want to stress that the
fact that the binding energy is still smaller than the ex-
perimental one is due to a specific character of the ground
state of 12C as will be discussed later.

Calculations with a huge number of basis functions
renders the systematic calculations extremely time con-
suming. This is why we use a smaller number of basis
functions (45 for the even-even and 60 for the even-odd
isotopes), but large enough to obtain reasonable values of
the calculated quantities. Furthermore, we have checked
that when the number of basis functions is further in-
creased, the calculated quantities already do not change
much. For example, when 60 basis functions are used for
12C, the B(E2, 0+ → 2+) value, the proton Qp and neu-
tron Qn quadrupole moments of the 2

+
1 state and the

expectation value of the harmonic-oscillator quanta ˆ〈N〉
are 21.70 e2fm4, 2.48 fm2, 2.40 fm2 and 8.27, respectively,
which are basically the same values as those obtained with
45 basis functions for (see table 2).

The calculated quantities and the available experimen-
tal data for the even-even isotopes are presented in figs. 3-7
and the numerical values are shown in table 2.
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Fig. 3. Experimental (open triangles) and calculated (squares)
binding energies of 12C-22C.

The calculated binding energy of 12C is smaller than
the experimental value (fig. 3). This may be partially due
to the adopted value of the width parameter ν, which is
kept fixed for all isotopes. Since the 3α-like component
is important in the ground-state wave function of 12C,
larger value of ν, closer to the α-particle value, could be
adopted and the binding energy would increase. To tune
the parameter ν to the binding energy is, of course, pos-
sible but we would have obtained an effective value of ν,
influenced, in general, by the chosen effective interaction
and the model space. We will not do it in a systematic
way because the Volkov interaction itself is known to give
insufficient binding energy for 12C when the Majorana pa-
rameter has value M = 0.6, a value adopted to fit the
binding energy of 16O and there are also indications that
the adopted spin-orbit interaction is too strong. We will,
however, document the dependence of the binding energy
on the width parameter by a simple calculation shown in
table 3 and explained in the next paragraph.

The width parameter ν is fixed to be the same for
all single-particle wave functions. In this way, we can re-
move the spurious center-of-mass motion exactly from the
Hamiltonian. It is also fixed to be the same for all studied
isotopes. Thus, the basis states used in this paper repre-
sent minima under the constraint of the fixed width pa-
rameter. Its value is reasonable for heavier isotopes, but
the case of 12C deserves more attention due to the special
character of its ground state. The ground state of 12C has
a transient character between shell model and 3α-cluster
structure. By a simple calculation we may document how
its binding energy changes when different width param-
eters are adopted and when an S = 1 component of a
two-particle wave function is explicitly taken into account
by choosing spin-up projections for one proton and one
neutron (thus having Sz = 1). In table 3 the calculations
with one basis wave function corresponds to total spin pro-
jection Sz = 0. The binding energy becomes larger when ν
approaches the α-particle value 0.23 fm−2. When we per-
form a large-scale calculation with 45 basis functions and
ν = 0.23 fm−2, the binding energy Ebin = 93 MeV, close
to the experimental value. We do not observe a clear min-
imum of the binding energy when varying ν, but we can
at least adjust its value to fit the binding energy of 12C.
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Fig. 4. Experimental (circles) and calculated (squares) ener-
gies of the 2+

1 states of the even-even carbon isotopes. A com-
parison is made with the calculation from ref. [13] (triangles).

We believe that the fact that the adjusted value is close
to the α-particle value reflects the 3α-cluster component
of the 12C ground state.

By including the Sz = 1 component, the binding en-
ergy further decreases. So this component may be impor-
tant. However, this effect is already included in our large-
scale calculations, because all two-particle configurations
occupying time-reversal orbits and having spin S = 0 will
also have S = 1 (even if Sz = 0). Furthermore, the case of
the 12C isotope is a special one and the spin-orbit inter-
action acts strongly.

The 12C and 14C nuclei correspond to neutron sub-
closed (N = 6) and closed (N = 8) shells, respectively,
and both the calculated and experimental 2+1 energies are
rather high (fig. 4). However, the calculated 2+1 energy
of 14C (8.32 MeV) is higher than the experimental value
(7.01 MeV). One of the reasons for this is most probably
the larger spin-orbit splitting of the 1p1/2 and 1p3/2 spin-
orbit partners which brings the dominant proton configu-
ration (1p3/2)

3(1p1/2)
1 higher in energy. Support for this

argument comes also from a higher 3/2− state (6.49 MeV)
than the experimental value (3.68 MeV) in 13C (fig. 8a).

On the other hand, the spin-orbit interaction plays
an important role in describing the 2+1 state in 12C. In
the cluster model calculations the level spacing between
the 0+1 and 2

+
1 states was always underestimated. For in-

stance, in a GCM calculation [14] it was 2.2 MeV, which is
much smaller than the experimental value 4.4 MeV. In the
present approach this level spacing is well reproduced, and
it is because the theory describes the dissociation of the
α cluster in the ground state 0+1 due to the LS force [15].
Also, in ref. [13] a systematic study of carbon isotopes is
performed, using several sets of effective interactions with
much weaker spin-orbit term (900 and 1500 MeV) and the
2+1 energies are systematically much smaller than the ex-
perimental ones (fig. 4). Thus, it seems that the choice of
a proper effective interaction with a spin-orbit term is a
key issue in the study of carbon isotopes and needs further
investigation.
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Table 2. The calculated binding energies (B.E.), the excitation energies of the 2+
1 states (Ex (2+)) and the radii (r) of the

even-even isotopes. The values in parenthesis are the experimental data. The experimental r.m.s. values are deduced from the
interaction cross-section using the Glauber model [16]. In the last five rows are the B(E2, 0+ → 2+) values, the proton Qp and

neutron Qn quadrupole moments of the 2+
1 states, the expectation values for the total number of the oscillator quanta ˆ〈N〉 and

its shell model limit.

12C 14C 16C 18C 20C 22C

B.E. (MeV) 88.3 107.5 110.2 115.0 122.7 122.0
(92.2) (105.3) (110.8) (115.7) (119.2) (120.3)

Ex (2+) (MeV) 4.13 8.32 2.32 2.25 3.31 5.72
(4.44) (7.01) (1.77) (1.62) (1.70)

r (fm) 2.40 2.39 2.55 2.65 2.65 2.79
(2.35±0.02) (2.30±0.07) (2.70±0.03) (2.82±0.04 ) (2.98±0.05)

B(E2, 0+ → 2+)(e2fm4) 21.69 25.84 7.62 5.29 13.93 4.03
(41± 5) (18.7± 2.5) (3.1± 0.02)

Qp(2
+
1 ) (fm

2) 7.80 8.60 −1.74 −3.65 6.21 −1.49

Qn(2
+
1 ) (fm

2) 7.64 2.54 −13.85 −20.29 18.80 −13.06
ˆ〈N〉 8.27 10.22 14.25 18.35 22.21 26.36

ˆ〈N〉 (shell model limit) 8 10 14 18 22 26

Table 3. Binding energies (in MeV) for 12C as a function of the
width parameter ν = 1/2b2 fm−2. In the first row, calculations
with one basis function are presented (Sz = 0). In the second
row, calculations with 3 basis functions (Sz = 1) are shown.

b = 1.4 b = 1.5 b = 1.6 b = 1.7

1 b.f. 89.62 85.19 81.78 77.30

3 b.f. 95.80 90.89 85.75 80.09

The overbinding observed for 20C and 22C (fig. 3) can
be also partially attributed to the used spin-orbit inter-
action. Furthermore, we observe an increase of the 2+1
energy in 20C. Our calculation thus suggests a (1d5/2)

6

sub-shell closure, not observed in the experimental data.
On the contrary, the experimental values of the 2+1 ener-
gies of 16C, 18C and 20C are almost the same, suggesting
the 2s1/2 and 1d5/2 orbits are almost degenerate in these
isotopes. In our case, the large spin-orbit splitting of the
1d5/2 and 1d3/2 orbits brings the 1d5/2 orbit lower in en-
ergy and the sub-shell closure may develop. This effect
may be partially responsible for the fact that the calcu-
lated spin of the ground state of 15C is 5/2+ instead of
1/2+, as will be shown later.

The experimental 2+1 energy of
22C is not known yet. In

our calculation a high value (5.7 MeV) is obtained (fig. 4).
If this sharp increase at 22C is measured, this would be
a strong evidence for the N = 16 neutron magic num-
ber. Although the calculated values of the r.m.s. radii are
relatively smaller than the experimental ones, both show
drastic increase at 16C (fig. 5). This kink of the r.m.s. ra-
dius is mainly due to the fact that two valence neutrons are
added to the sd-shell. The radii are known to be sensitive
to the value of the Majorana parameter M . Larger val-
ues ofM can be adopted for heavier isotopes which would
lead to slightly larger radii. In our calculations, this pa-
rameter has been kept constant atM = 0.6 over the whole
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Fig. 5. Comparison of the experimental (squares) and calcu-
lated (circles) r.m.s. radii for 12C-22C. The experimental val-
ues are deduced from the interaction cross-sections using the
Glauber model.

isotope region for the sake of simplicity. We expect that
systematically larger radii can be obtained when a density-
dependent interaction is used because r.m.s. radii are also
sensitively dependent on it. On the other hand, the exper-
imental r.m.s. radii may be model dependent and not so
precise as they are derived indirectly using the Glauber
theory. As can be seen from fig. 5, the radii become larger
and larger in the region heavier than 14C. This is mainly
due to the fact that the neutron radii become larger due
to the development of the neutron skin structure (another
evidence comes from the neutron quadrupole moments, as
will be shown later) while the proton radii are more stable
with the increase of the neutron number, similarly to the
results in ref. [13].
In order to analyze the development of clustering quan-

titatively, we calculate the expectation value of the oper-
ator of the total number of the oscillator quanta N̂ =
∑

i â
†
i âi, where â

†
i , âi are the creation and annihilation
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Fig. 6. Experimental (squares) and calculated (circles) B(E2)
transition strengths for the even-even carbon isotopes. Com-
parison is made with a shell model calculation using effective
charges (triangles).

operators of harmonic-oscillator quanta, respectively. In
general, if the clustering is developed, the wave function
of the system contains the components of many orbits in
higher shells and the expectation value of the oscillator
quanta is large. On the other hand, a small value of the
oscillator quantum number indicates that the state is close
to the shell model one in the 0~ω configuration and the

spatial clustering is not developed. Our values of ˆ〈N〉 are
close to the shell model limit for all isotopes. For 14C and
heavier isotopes, this is what should be expected because
the clustering structure dissapears in neutron-rich carbon
isotopes. The small deviation from the shell model lower
limit value for the heavier isotopes is due to the contri-

bution of many neutrons. A larger value of ˆ〈N〉 for 12C
should be obtained when the 3α component of the ground-
state wave function of 12C is taken into account effectively.

Later we will show how ˆ〈N〉 and other quantities change,
when the spin-orbit interaction, which suppresses the de-
velopment of a cluster structure, is decreased.

The comparison of experimental B(E2) values with
those calculated within the shell model [17] and in the
present approach are shown in fig. 6. The calculated
B(E2) value for 12C is smaller than the experimental
value. This is most probably due to the small amplitude of
the 3α component in the ground-state wave function. The
B(E2) values for the 16C and 18C isotopes are very small.
As is discussed in ref. [17], the neutron effective charges
become very small in the nuclei where neutrons are weakly
bound. In 16C almost all contributions to the B(E2) value
comes from neutrons because the protons form an al-
most closed shell model configuration. Thus, the reduction
of the neutron effective charges affects the B(E2) value
strongly. Namely, the reduction of the neutron effective
charge for the transition between the 2s1/2 and 1d5/2 or-
bits is of particular importance, because the ground state
of 16C contains a large (2s1/2)

2(ν) component. A simi-

lar mechanism makes the B(E2) value small for 18C. The
B(E2) value for 16C has been measured recently [18] and
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Fig. 7. Calculated laboratory quadrupole moments for protons
(squares) and neutrons (triangles) for the even-even carbon
isotopes. The experimental value for 12C is indicated by an
asterix.

it is indeed very small. In 20C, the proton contribution to
the B(E2) values becomes again larger, because the con-
tribution of protons increases. In general, the results we
have obtained within the AMD method with bare charges
are in a good qualitative agreement with those obtained
within the above-mentioned shell model calculation and
in reasonable agreement with the experimental data.

The quadrupole moment of protons Qp of
16C is much

smaller than Qn, as should be expected for a closed shell
proton configuration (fig. 7). The same is true also for 18C.
A slight increase of Qp is observed in

20C. The quadrupole
moments Qp and Qn are almost the same in

12C, while
Qn decreases significantly in

14C with the neutron magic
number N = 8. Again, we would expect larger values for
12C if the 3α component were stronger in the ground-
state wave function. In the next paragraph we will show
how the calculated quantities change when the spin-orbit
term, which governs the development of the cluster struc-
ture, is decreased. We may notice much larger absolute
values of the neutron quadrupole moments relative to the
proton quadrupole moments in the neutron-rich region,
which shows that the neutron density in the neutron-rich
region reaches widely into the outer region. We also re-
call that in ref. [19], where the Skyrme SIII case interac-
tion is employed in an AMD calculation without angular-
momentum projection, the proton deformation of 16C and
18C is prolate. Protons of these nuclei then would be sep-
arated into two spatial parts. On one side, there are two
protons, and on the other side, there are four protons. The
Hartree-Fock calculations with the Gogny force [20] and
with the Skyrme SIII force [21] also give prolate proton
deformations for 16C and 18C. However, the results of the
AMD calculation with the MV1 force [22] contradict these
results, suggesting, that protons of the carbon isotopes are
all oblately deformed. From all these results it seems that
the proton deformations of 16C and 18C are more sensi-
tive to the effective interaction. We would like to stress
another interesting feature observed in our calculation,
namely that the proton distribution seems to adjust its
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Fig. 8. Excitation energies of the lowest negative-parity states
for 13C are compared with the experimental levels in a). In b)
the experimental and calculated energies of the lowest positive-
parity states in 15C are compared. The dotted line indicates the
energy of the 1/2+ state obtained with the angular-momentum
projection + relative orientation method.

deformation to the neutron one, to increase the overlap
of the proton and neutron matter distribution. This may
show the importance of the proton-neutron interaction in
neutron-rich nuclei.

Now we want to show how the B(E2, 0+ → 2+) val-
ues, quadrupole moments and the expectation values of

the harmonic-oscillator quanta ˆ〈N〉 change when the spin-
orbit interaction is artificially decreased. It is known that
the spin-orbit interaction acts against the development of
spin-isospin saturated clusters, such as the α particles,
because in such clusters S = 0 and the spin-orbit inter-
action cannot contribute. Thus, by weakening the spin-
orbit interaction, a cluster component of a wave func-
tion should increase, which should be reflected in the
above-mentioned quantities. We have decreased the ab-
solute value of the strength of both terms in the two-
range G3RS spin-orbit interaction from the original value
of 2000 MeV to 1750 MeV, 1500 MeV and 1200 MeV.

In the first case, B(E2, 0+ → 2+), Qp, Qn and ˆ〈N〉 are
24.0 e2fm4, 2.69 fm2, 2.60 fm2 and 8.31, respectively, and
in the second case, the same quantities have the values
26.0 e2fm4, 2.83 fm2, 2.77 fm2 and 8.36, respectively. In
the last case, they are 28.91 e2fm4, 2.97 fm2, 2.90 fm2 and
8.43, respectively. Increase of all the quantities indicates
increase of the deformation and development of the spa-
tial clustering. This also demonstrates the importance of
a properly chosen effective interaction for the description
of the experimental data.

Next we discuss the even-odd C isotopes; the number
of basis states for each isotope is shown in table 4. The
calculated and experimental binding energies and r.m.s.
radii are presented in figs. 3 and 5. The numerical values
are shown in table 5.

Agreement of the calculated and experimental binding
energies is reasonable. However, the ground-state spin and
the halo structure of the 15C nucleus are not reproduced
and the excitation energy of the 1/2+ state in the 19C nu-
cleus is relatively high (figs. 8b, 9b). We have to remember

Table 4. The number of the employed basis states for the
even-odd C isotopes as a function of constrained r.m.s. radius.

rconstr. (fm) 13C 15C 17C 19C 21C

2.3 30
2.4 30 30
2.5 30
2.6 30
2.7 30 10
2.8 10 30
2.9 10 30
3.0 10
3.1 10
3.2 10

that the ground-state properties of 19C are not very well
known experimentally. It is possible that the large inter-
action cross-section from which the large r.m.s. radius has
been extracted is due to the presence of an isomeric state,
as suggested by the measurements in GANIL [8].
Shell model calculations performed in ref. [3] show

there is a triplet of low-lying 1/2+, 3/2+ and 5/2+ states
in 17C, with ordering dependent on the used interaction.
However, the latest experiments favor a 3/2+ as a ground
state [23], which is reproduced by our model (fig. 9a).
In 15C the 2s1/2 orbital is below the 1d5/2 orbital. This

fact is clearly observed as an abnormal ground-state spin
parity Jπ = 1/2+ of this nucleus. The lowering of the s
orbital is due to the halo formation. The halo is formed
since the orbital with lowest angular momentum gains en-
ergy by extending its wave function. For 15C we did not
obtain the ground-state spin 1/2+. Our calculation gives
−104.2 MeV for the 1/2+ state and −107.1 MeV for the
5/2+ state (fig. 8b). The fact that the 5/2+ state is lowest
may be also given by stronger spin-orbit interaction which
brings the 1d5/2 orbit down in energy. In ref. [9], where the
MV1 force with a density-dependent term is used to cal-
culate the magnetic moments of the carbon isotopes, the
ground-state spin 1/2+ of 15C is not reproduced either.
This may also show the limitation of the AMD approach
which may be too simple for the description of the exotic,
neutron-rich nuclei.
To describe the tail of the wave function next we adopt

a projection + multiple relative orientation (between the
core and the valence neutron) technique. If we only project
the total Jπ of 15C, the wave function describing the rel-
ative motion of the valence neutron and 14C is not opti-
mized, and we cannot obtain correct ordering of the lev-
els. Therefore, this new technique is necessary, especially
for the weakly bound systems with deformed cores. We
express this effect by superposing single projected wave
functions. First, the core wave functions (14C) are gener-
ated and afterwards on each of them several wave func-
tions of the last valence neutron are superposed, each of
them corresponds to a different relative orientation with
respect to the core. If the basis states of 14C correspond
to the r.m.s. constraint 2.3, 2.4 and 2.5 fm (only one basis
state for each r.m.s. radius) and for each of them 16 ba-
sis states are superposed, the 1/2+ state is about 1 MeV
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Table 5. The calculated binding energies (B.E.) and radii (r) of the even-odd isotopes. The spin and parity of the lowest state
which come out from the calculations is also indicated. The values in parenthesis are the experimental data. The experimental
values for the radii are deduced from the interaction cross-section using the Glauber model [16].

13C 15C 17C 19C 21C

Jπ(cal.) 1/2− 5/2+ 3/2+ 3/2+ 1/2+

B.E. (MeV) 96.7 107.1 111.8 113.8 120.4
(97.2) (106.5) (111.5) (115.8) (118.8)

r (fm) 2.26 2.36 2.55 2.71 2.74
(2.28±0.04) (2.40±0.05) (2.72±0.03) (3.13±0.07)
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Fig. 9. The lowest positive-parity states in 17C are compared
with the experimental levels in a). In b) the lowest positive-
parity levels for 19C are shown.

higher than 5/2+, which is much less than in the original
calculation where this energy difference is typically sev-
eral MeV. When a larger number of basis wave functions
is adopted (5 wave functions for 3 different r.m.s. con-
straints for 14C and for each of them 10 wave functions
for the valence neutron), the 1/2+ state is 0.6 MeV above
5/2+ (the dotted line in fig. 8b).

The lowest normal parity states of 19C are displayed
in fig. 9b. The basis states with large r.m.s. radii are em-
ployed in an attempt to reproduce the suggested large
r.m.s. radius (see table 4). The obtained energies are
−110.9 MeV, −113.8 MeV, and −112.8 MeV for the 1/2+,
3/2+, and 5/2+ states, respectively. In general, in all cal-
culations we have performed (with different number of ba-
sis wave functions, r.m.s. constraints, strength of the spin-
orbit interaction) the energies of the first 1/2+, 3/2+ and
5/2+ states are close to each other and in some of them
the 5/2+ state is lowest. The variation of the spin-orbit
strength affects also the 1/2+ state which shows that this
state has a Nilsson-like character in this model. We re-
call that similar results have been obtained also in ref. [3],
where shell model calculations led to a triplet of low-lying
levels with spin-parity 1/2+, 3/2+ and 5/2+ and their
ordering depended on the adopted effective interaction,
similarly to 17C. It is considered that the 1/2+ state can
be pulled down by applying the same technique as the
one adopted for 15C. We can conclude that the idea of a
valence neutron in the s-orbit used to explain the large
r.m.s. radius of 19C is not supported by our calculation.

In general, the strongly repulsive 1p3/2(π)-1d5/2(ν)
tensor interactions [2], would be partially responsible for
the crossing of the 1d5/2 and 2s1/2 orbits in the carbon
isotopes. This effect is not included in our model. A proper
description of the pairing interaction between neutrons on
the 1d5/2 orbital is also important. On the other hand, the
lowering of the 2s1/2 single-particle energy coming from
the decrease of the kinetic energy can be described by the
above-mentioned technique, as done for 15C. However, as
has been stressed at the beginning, the situation with the
ground state of 19C is still unclear and awaits further ex-
perimental investigations.

4 Conclusion

In this paper we have presented systematic calculations
for 12C-22C. Large number of quantities have been calcu-
lated for the even-even isotopes. The calculated binding
energies are in reasonable agreement with the experimen-
tal data. The systematic comparison of the binding and
2+1 energies of the even-even isotopes with the experimen-
tal data reveals the importance of the spin-orbit term of
the effective interaction. Specifically, the calculated energy
of the 2+1 state in

14C and the observed sub-shell closure
in 20C suggest the spin-orbit term should be weaker. On
the other hand, with a weaker spin-orbit interaction the
energy of the 2+1 state in

12C is much lower than the ex-
perimental value. It seems that this point deserves more
detailed investigation. The neutron magic number N = 8
is reflected by the large 2+1 energy of

14C. A very large
2+1 energy of

22C supports the idea of an N = 16 neutron
magic number.
The r.m.s radii systematically increase beyond 14C.

This can be explained by the development of a neutron
skin. This fact is reflected also by the neutron quadrupole
moments, which increase beyond 14C, indicating the neu-
tron matter distribution stretches widely in the outer re-
gion. An interesting tendency is observed in the behaviour
of the proton deformation which seems to adapt to that
of the neutrons.
The calculated B(E2) values show a behavior simi-

lar to that obtained by shell model calculations with re-
duced effective neutron charges. The advantage of the
AMD method is that no effective charges have to be used,
because the changes of neutron and proton distribution
are authomatically described by the model. A recently
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measured very small B(E2) value for 16C is successfully
reproduced by our model.
The calculated binding energies for the even-odd iso-

topes are in good agreement with the experimental values.
The ground-state spin of 17C is reproduced. For the 15C
isotope, a good description of the tail of the wave function
is important. It has been achieved by applying a projec-
tion + multiple relative orientation technique and a much
lower 1/2+ state has been obtained. The situation with
the ground-state spin of 19C is unclear and further exper-
iments are necesssary to solve the controversial predictions
from the previous experiments.
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